Homologs in group_747

Help

6 homologs were identified in 6 genomes with OrthoFinder.
The following table displays the locus tag of each homolog, the organism to which it belongs, the gene name and product.

Locus tag Identity Source Gene Product
FBDBKF_03325 FBDBKF_03325 100.0 Morganella morganii S1 yhdP AsmA2 domain-containing protein YhdP
EHELCC_07210 EHELCC_07210 100.0 Morganella morganii S2 yhdP AsmA2 domain-containing protein YhdP
LHKJJB_07070 LHKJJB_07070 100.0 Morganella morganii S3 yhdP AsmA2 domain-containing protein YhdP
HKOGLL_03860 HKOGLL_03860 100.0 Morganella morganii S5 yhdP AsmA2 domain-containing protein YhdP
F4V73_RS11610 F4V73_RS11610 84.8 Morganella psychrotolerans yhdP AsmA2 domain-containing protein YhdP
PMI_RS18090 PMI_RS18090 44.4 Proteus mirabilis HI4320 yhdP AsmA2 domain-containing protein YhdP

Distribution of the homologs in the orthogroup group_747

Help

Number of homologs in each genome (first column) and amino-acid identity of the closest homolog (second column).

Download SVG

Phylogeny of the RefSeq best hits of group_747

Swissprot accession Eval Score ID (%) N gaps Alignment length Annot score Gene Description Organism
P46474 0 1048 42 11 1270 3 yhdP Uncharacterized protein YhdP Escherichia coli (strain K12)

  • Number of RefSeq hits:

General

Source Morganella morganii S4
Locus tag NLDBIP_07535
Feature type CDS
Gene yhdP
Product AsmA2 domain-containing protein YhdP
Location 179562 - 183341 (strand: 1)
Length 3780 (nucleotides) / 1259 (amino acids)

Contig

Accession ZDB_522
Length 269640 nucleotides
Topology linear
Plasmid False

Orthology

Orthogroup group_747
Orthogroup size 7
N. genomes 7

Actions

Genomic region

Domains

PF13116 Protein of unknown function
PF13502 AsmA-like C-terminal region

COG entry Annotation(s)

ID Function(s) descr. Function(s) cat. Description
COG3164 Function unknown (S) S Uncharacterized conserved protein YhdP, contains DUF3971 and AsmA2 domains

Protein Sequence

MRRLPGILLTCVIVIVIAAALVLGGLRYLLPQINEYRPQIEQKLSQMTGATVRIGEISGRWQGFGPALTLRDLTVTAPDADISAEKIDLSLDIWRTLFRFQVSFRDLTFWHMKLDYKQPLSSDGSSIETDDAMSGLWLERFDNFDLRDSEIRFLTPSGDPATLLVSRLSWLNQSKRHRAQGEISLSSVNNPRGWLQVRLDLRDVNGLLDEGTVYLQADDIDMTPWFSRWLRDNTGLNKAGFSLAGWMTVEKGTITRGLVRLNSGEADWLVGKDTHTLEVQDLLVQMRRQGEGWLFNIPDLLNLKTDGQQWPEGSLSLLYIPPSAKYGGNPHLRIRANDIELARLSSIVPTFSFLTNDIVKAWQEREPSGLIRDFALDITPAAPENLELDVSWQDVSWKAREELPSVSHFSGVLRGGQARGILRFALDDSVLDYRPMFTAPLAVSESRGQVQWNNTDGNFSLWSDNLDLQSGALRANGNFRYQHDKDRPPSLGILGGVTLTDAGEAWRYFPVPLMGEFLSEYLTQALIAGKAENATVIFQGNPADFPFRKNEGQFQIWVPLRDATFKYDQEWPALINMDADLNFHNQGLWISAQEAKLGEATARNLKADIPDFMVERLYIQSDIEGKGESLGKYFDQTPMKSSIGNTLEQLKIGGEVKGDLKLEIPLNFNEMVRATGHVNLKNNDIDVVPLGSTLKGVSGQFRFDNGDLESDRITAHWFGQPLNIRFTTKENPSDFAVNIDLDGNWQMKGIDGIPAAIKQHVTGSFPWTGVVNIALPQKGEMSYTVDLEGQTGKLTSSTLPAVRRWAAESGTLNVHATGTEHTLKAGGTVGKSFSVLTDWRLGDILTLNGAAVVPGTKVPEKVTPDVISIALPPISGEEWVGALAVAGQNHQQPASLKLPGNIDISAPYADFAGQRWNQVKLRIHPQENGWLLSSDSQELRGDIRIPASGPWQASIDYLYYNPESIQNALPESQRNQTTKTDYRVGSWPAVTLRCEACWVSGLNIGTVNAKVWPENNSLVLDAATVKNSASELTLSGRWDAGPEPLSHFKGQFKGPVFDNMAAYFGVLVPITGSPFNVDFDLSWRDVPWSPDVATLNGIISTSLGKGAIERMGGGNAGKLLRLVSFDALLRKLQLDFTDTFSNDFVFDSIRGKGVIKDGILKTTDTRVDGLMADISFSGSVYLVERRIDMSVVVTPELSATVGVATAFVVNPIAGAAVFVASKVLGPLWSKISVIRYHLSGSLEEPKIDEVLRQLKETRE

Flanking regions ( +/- flanking 50bp)

GCGGATATCCGGTTCCGCCGGCCTTGACAGCTGCAGGAGAAGGAGAGCCAGTGAGGCGACTGCCCGGGATTTTACTGACATGTGTGATTGTAATCGTGATTGCTGCGGCACTGGTGCTCGGCGGTCTGCGCTATCTGTTGCCTCAGATTAATGAATACCGCCCGCAGATCGAACAAAAACTCTCACAAATGACCGGTGCCACGGTCAGAATCGGTGAAATCAGCGGCCGCTGGCAGGGATTCGGCCCGGCGCTGACACTCCGTGACCTGACTGTTACCGCTCCGGACGCGGACATTTCAGCCGAAAAAATCGACCTATCCCTGGATATCTGGCGGACGTTATTCCGTTTTCAGGTCAGTTTCCGTGATCTGACATTCTGGCACATGAAGCTGGATTACAAACAGCCGCTGAGCAGTGACGGCAGCAGTATTGAAACCGATGATGCGATGTCCGGTCTCTGGCTGGAGCGCTTTGATAATTTTGATCTGCGCGACAGTGAAATCCGTTTTCTCACGCCGTCCGGCGATCCTGCCACTTTGCTGGTTTCCCGTCTGTCATGGCTCAATCAGAGCAAACGCCACCGCGCTCAGGGGGAGATAAGTCTCTCCTCGGTGAATAACCCGCGCGGCTGGCTGCAGGTGCGTCTGGATCTGCGGGATGTGAACGGTCTGCTGGATGAGGGAACGGTCTACCTCCAGGCGGATGATATTGATATGACGCCGTGGTTCAGCCGCTGGCTGCGTGATAACACCGGGCTGAACAAGGCCGGTTTCAGCCTGGCCGGCTGGATGACGGTGGAGAAAGGGACGATAACCCGGGGCCTGGTCAGACTGAACTCCGGCGAGGCGGACTGGCTGGTCGGTAAGGACACGCACACCCTGGAAGTTCAGGATCTGCTGGTGCAGATGCGCCGCCAGGGGGAAGGCTGGCTGTTTAATATCCCGGATCTGCTGAATCTGAAAACTGACGGGCAGCAGTGGCCGGAGGGCAGTCTGTCACTGCTTTATATCCCGCCGTCGGCCAAATACGGCGGCAATCCGCATCTGCGTATCCGCGCCAATGATATTGAGCTGGCGCGTCTGAGCAGCATTGTGCCGACGTTCTCTTTCCTCACCAATGATATTGTCAAAGCCTGGCAGGAGCGCGAGCCGTCAGGTCTTATCCGCGATTTTGCCCTTGATATCACCCCGGCCGCCCCGGAAAACCTCGAACTGGATGTTTCCTGGCAGGATGTCAGCTGGAAAGCGCGGGAAGAATTACCGTCGGTATCTCATTTCAGCGGCGTATTGCGCGGCGGGCAGGCACGCGGCATTCTGCGTTTTGCCCTTGATGACAGTGTGCTGGACTACCGCCCGATGTTTACCGCACCGTTGGCGGTATCAGAAAGCCGCGGACAGGTGCAGTGGAATAATACGGACGGCAACTTCAGCCTCTGGAGTGATAATTTAGATCTGCAATCCGGCGCGCTGCGGGCGAATGGCAACTTCCGCTATCAGCATGATAAGGACCGGCCGCCGTCTCTCGGGATCCTCGGCGGCGTGACCCTGACGGATGCCGGGGAAGCCTGGCGCTATTTCCCGGTACCGCTGATGGGGGAATTCCTGAGCGAATACCTGACACAGGCGCTGATTGCCGGTAAAGCGGAAAATGCTACGGTGATATTTCAGGGTAACCCGGCAGACTTCCCGTTCCGCAAAAACGAAGGGCAGTTCCAGATTTGGGTACCGCTGCGTGACGCCACCTTTAAATATGATCAGGAATGGCCTGCTCTGATAAACATGGACGCGGATCTGAATTTCCATAACCAGGGTCTGTGGATCAGTGCACAGGAAGCAAAACTGGGCGAGGCCACCGCCCGCAATCTGAAAGCGGATATTCCGGATTTCATGGTTGAGCGCCTCTATATTCAGTCTGATATTGAAGGCAAAGGCGAATCACTGGGTAAATATTTTGATCAGACACCGATGAAAAGCTCTATCGGTAATACCCTGGAGCAACTGAAAATCGGTGGTGAGGTTAAGGGTGATCTTAAATTGGAAATCCCGCTTAACTTCAATGAGATGGTGCGGGCGACCGGGCATGTTAATCTGAAAAATAATGATATTGATGTGGTGCCGCTCGGCAGCACACTCAAAGGTGTCAGCGGACAATTCCGCTTTGATAACGGCGACCTGGAAAGTGATCGCATCACGGCGCACTGGTTCGGTCAGCCGCTGAATATCCGCTTTACCACCAAAGAAAATCCGTCTGATTTTGCCGTCAATATCGATCTGGACGGTAACTGGCAGATGAAGGGCATCGACGGCATACCGGCGGCCATAAAACAGCACGTAACCGGTTCGTTCCCGTGGACAGGGGTGGTGAACATTGCCCTGCCGCAGAAAGGGGAAATGAGCTACACCGTGGATCTGGAAGGTCAGACCGGCAAACTGACCAGCAGCACCTTACCGGCTGTCCGGCGCTGGGCGGCGGAGAGCGGCACACTGAATGTGCATGCCACCGGGACAGAACACACCCTGAAAGCCGGGGGAACCGTCGGCAAATCGTTCAGCGTCCTGACGGACTGGCGGCTCGGCGATATTCTCACGCTTAATGGTGCGGCAGTCGTTCCGGGTACAAAAGTACCGGAGAAAGTCACGCCGGATGTTATCAGTATTGCCCTGCCGCCGATCAGCGGTGAGGAGTGGGTCGGTGCGCTGGCCGTTGCCGGTCAGAATCACCAGCAGCCTGCCTCACTGAAACTGCCGGGAAATATTGATATTTCCGCCCCGTATGCGGATTTTGCCGGACAGCGCTGGAATCAGGTGAAACTGCGTATTCATCCGCAGGAAAACGGCTGGCTGCTCAGTTCGGACAGTCAGGAGCTGCGCGGGGATATCCGCATTCCGGCTTCCGGACCGTGGCAGGCAAGTATTGATTATCTCTACTATAATCCGGAGTCGATTCAGAATGCGCTGCCGGAATCGCAGCGTAATCAAACCACCAAAACGGATTACCGCGTCGGCAGCTGGCCTGCGGTCACACTGCGCTGTGAAGCCTGCTGGGTGAGCGGCCTGAATATCGGTACGGTGAATGCGAAAGTCTGGCCGGAAAATAACTCTCTGGTGCTGGATGCGGCAACAGTCAAAAACAGTGCCAGTGAACTGACACTCAGCGGCCGCTGGGATGCCGGTCCGGAGCCATTGTCGCACTTTAAAGGTCAGTTTAAGGGGCCGGTCTTTGATAATATGGCCGCCTATTTCGGGGTACTGGTGCCTATCACCGGCTCACCGTTCAATGTGGATTTTGACCTGAGCTGGCGGGATGTTCCCTGGTCGCCGGATGTGGCAACCCTGAACGGTATTATCAGCACGTCGCTCGGCAAAGGGGCGATTGAACGGATGGGCGGCGGTAATGCCGGTAAACTGCTGCGGCTCGTCAGTTTTGATGCATTACTGCGCAAATTACAGCTCGATTTCACGGATACTTTCAGTAATGACTTCGTTTTTGACAGCATACGCGGTAAAGGCGTGATAAAAGATGGTATTTTAAAGACAACCGATACCCGCGTGGACGGATTAATGGCGGATATCAGCTTTAGCGGTTCAGTTTATCTTGTGGAGCGTCGTATTGATATGTCGGTGGTTGTCACACCGGAACTCTCTGCGACGGTCGGGGTGGCGACAGCCTTTGTGGTTAACCCGATAGCCGGAGCGGCAGTCTTTGTGGCCAGTAAGGTACTCGGCCCGCTCTGGAGTAAAATTTCGGTGATACGGTATCACCTGAGCGGCAGTTTAGAAGAGCCGAAGATAGATGAAGTTTTGCGTCAGTTAAAGGAGACCCGGGAATGAAAAACGCAAATGTGGCTTTATTGCAGCTGTGCAGCGGCACAAATATTAAA